Question		on	Answer	Marks	Guidance
1	(a	(i)	$H_{0} = 1/\text{age}$ $H_{0} = 1/(13.7 \times 10^{9} \times 3.16 \times 10^{7})$ $(H_{0} =) 2.31 \times 10^{-18} (\text{s}^{-1})$ $(H_{0} =) \frac{2.31 \times 10^{-18} \times 3.09 \times 10^{16} \times 10^{6}}{10^{3}}$ Hubble constant = 71.4 (km s ⁻¹ Mpc ⁻¹)	C1 C1 A1	Allow: 2 sf answer Special case : Using $H_0 = 1/13.7 \times 10^9 = 7.30 \times 10^{-11} (y^{-1})$ gives an answer of 2.26 × 10 ⁹ (km s ⁻¹ Mpc ⁻¹) – allow 1 mark
		(ii)	$v = H_0 d$ (v =) 71.4 × 50 or 3.57 × 10 ³ (km s ⁻¹) or 3.57 × 10 ⁶ (m s ⁻¹)	C1	Possible ecf from (a)
			$\frac{\Delta\lambda}{\lambda} = \frac{3.57 \times 10^6}{3.0 \times 10^8} (= 1.19 \times 10^{-2})$	C1	
			$\Delta \lambda = 656 \times 1.19 \times 10^{-2}$ or $\Delta \lambda = 7.80$ (nm)	C1	
			wavelength = $656 + 7.80$		
			wavelength = 664 (nm)	A1	Allow: 2sf answer
	(b)		Big bang: Creation of the universe (from which space/time	B1	
			Any three from:		
			1. (At the start) the universe was hot / infinitely dense	$B1 \times 3$	
			 Expansion of the universe led to cooling The (current) temperature of universe is 2.7 K / 3 K 		
			4. (The universe as a black body) is associated with mi-		Not: The universe now has microwaves. (The microwaves
			crowaves at this temperature (AW)		must be linked with current temperature)
			The (wavelength of the) gamma radiation stretched to microwaves (by the expansion).		
			QWC: (Cosmological principle is supported because) MBR is isotropic	B1	Allow: Microwaves have the same intensity in all directions

G	Question	Answer	Marks	Guidance
	(c)	(For an open / flat universe)		
		Further expansion will lead to cooling / temperature lower than 3K / temperature tend to absolute zero (AW)	B1	Alternative:Temperature (will eventually) increases if closed_universe b1 The wavelength (of EM radiation) get smallerB1
		The wavelength (of the EM radiation) gets longer / frequency (of the EM radiation) gets smaller / energy of photons decreases / microwaves become radio waves	B1	
	(d)	Graph starting from origin and having a shape consistent with either open or accelerated universe	B1	Not a straight line
		Total	15	

Question		on	Answer	Marks	Guidance
2	(a)		 Any <u>four</u> from: 1. (Fusion is the) joining / fusing together of ('lighter') <u>nuclei</u> / <u>protons</u> (to make 'heavier' nuclei) 2. Mass decreases in the reaction and this is transformed into energy OR the products have greater binding energy 3. High temperatures / ~10⁷ K needed for fusion 4. High pressure / density (required in the core) 5. The protons / nuclei repel (each other because of their positive charge) 6. The strong (nuclear) force comes into play when the protons / nuclei are close to each other 	B1×4	Not: Atoms / particles for nuclei /protons.
	(b)		 (When hydrogen / helium runs out) the outer layers of the star expands / a (super) red giant is formed The core (of the star) collapses (rapidly) / a <u>supernova</u> is formed (Depending on the initial mass of the star the remnant is either a) <u>neutron star</u> or a <u>black hole</u> 	B1 B1 B1	
			Total	7	

Question		on	Answer	Marks	Guidance
3	(a)		$F = \frac{GMm}{r^2}$	C1	
			force = $\frac{6.67 \times 10^{-11} \times (10^{41})^2}{(4 \times 10^{22})^2}$	C1	Allow: 4×10^{26} (N) or 10^{26} since this is an estimation
			force = 4.2×10^{26} (N)	A1	Allow: 2 marks for 4.2×10^{n} ; n \neq 26 (POT error)
	(b)		 Allow any <u>one</u> from: The galaxies are receding / moving away from each other (because of the big bang) Other galaxies may be pulling them in opposite direction The acceleration is too small to collapse (other than over a very long period of time) 	B1	
	(c)		 Any <u>six</u> from: (At the start it was) very hot / extremely dense / singularity All forces were unified Expansion led to cooling Quarks / leptons (soup) More matter than antimatter Quarks combine to form hadrons / protons / neutrons Imbalance of neutrons and protons / (primordial) helium produced Atoms formed Idea of gravitational force responsible for formation of stars / galaxies Temperature becomes 2.7 K / 3 K or (the universe is saturated with cosmic) microwave background radiation 	B1×6	Show annotation on Scoris
	(d)	(i)	Dark lines / bands against a background of <u>continuous</u> <u>spectrum</u>	M1 A1	

Question	Answer	Marks	Guidance
(ii)	$\frac{v}{c} = \frac{\Delta\lambda}{\lambda}$ speed = $\frac{86.6}{393.4} \times 3.0 \times 10^8$ (Any subject) speed = 6.6×10^7 (m s ⁻¹) or 66000 (km s ⁻¹) $v = H_0 d$ $66000 = 50 \times d$ distance = 1300 (Mpc)	C1 C1 A1	Allow: 1 mark for $\frac{86.6}{480.0} \times 3.0 \times 10^8 = 5.41 \times 10^7$ (m s ⁻¹) Allow: 2 marks for 1.3×10^n ; n ≠ 3 (POT error) Note: Answer is 1080 (Mpc) if 5.4×10^7 (m s ⁻¹) is used; this value will score 2 marks
	Total	15	

Question		ו	Expected Answers	Marks	Additional guidance
4	(a)		The critical density is the density for which the universe will expand towards a (finite) limit or rate of expansion tends to zero / which will result in a <u>flat</u> universe	B1	Not: critical density is given by $\frac{3H_0^2}{8\pi G}$
	(b)		Hubble constant = $\frac{65 \times 10^{3}}{10^{6} \times 3.1 \times 10^{16}}$ Hubble constant = 2.1 × 10 ⁻¹⁸ s ⁻¹ critical density = $\frac{3H_{0}^{2}}{8\pi G}$ critical density = $\frac{3 \times (2.1 \times 10^{-18})^{2}}{8\pi \times 6.67 \times 10^{-11}}$ critical density = 7.9 × 10 ⁻²⁷ (kg m ⁻³)	B1 C1 A1	Possible e.c.f. from value of Hubble constant within this calculation
	(c)	(i)	open: (density of universe < critical density hence) the universe will expand forever closed: (density of universe > critical density hence) the universe will (eventually stop expanding and then) contract / big crunch flat: (density of universe = critical density hence) the universe will expand towards a (finite) limit / rate of expansion tends to zero	B1 B1 B1	Allow: 'universe continues to expand' Not: 'The universe stops expanding' Special case: Award 1 mark for correct sketches if no explanation is given for open, closed and flat
		(ii)	Any <u>one</u> from: Existence of dark matter / black holes / neutrinos / dark energy / H_0 is not known accurately	B1	
			Total	8	